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Abstract—MPI one-sided or remote memory access (RMA)
communication provides a different execution model from tradi-
tional two-sided or group communication and is better suited for
some classes of applications. However, current implementations
of MPI RMA are notorious for their inability to scale to large
systems or problem sizes. In this paper, we present a study of the
RMA infrastructure in popular open-source MPI implementa-
tions. Our objective is to identify critical scalability limitations
with respect to memory usage in these implementations. We
then perform a thorough evaluation on two cluster computers
to demonstrate those scalability limitations, and we provide
suggestions on how they can be alleviated.

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is the most
prominent model for parallel programming of scientific com-
puting applications on large parallel and distributed comput-
ing systems. In MPI-2, the MPI Forum introduced one-sided
or remote memory access (RMA) communication. In MPI-
3, the RMA capabilities of MPI were significantly revised,
leading to newer, cleaner, and more performance-capable
RMA semantics. In the RMA model, one process can directly
access the memory on another process without requiring
explicit communication calls from the target. This model
provides a different execution paradigm from traditional
two-sided or group communication, offering an attractive
alternative for some applications.

Several researchers have investigated MPI RMA as an
alternative to their existing usage of MPI, particularly for
applications with irregular communication patterns. Such
studies are motivated by the fact that MPI RMA does not
require processes to be “cooperative”; in other words, the
origin does not need to explicitly match a call on the target.
This approach improves the ease of writing applications
especially when communication is irregular and data driven,
because the programmer no longer needs to carefully plan
the communication pattern. For example, in NWChem [2], a
large quantum-chemistry application, massive asynchronous
messages need to be communicated; and a process typically
does not know from whom to receive the message. Thus, it
uses RMA to implement a model where each process can
dynamically fetch data, perform the computation, and write
the computed output to a target remote memory region.

Despite its growing prominence, however, current imple-
mentations of MPI RMA are notorious for their inability to
scale to large systems or problem sizes. A commonly men-
tioned example in the literature is the failure of MPI RMA to

scale with the Graph 500 benchmark [3]. Specifically, most
MPI implementations run out of internal resources when
scaling Graph 500 to large problem or system sizes. Irregular
communication, such as that evidenced in Graph 500, in-
volves a large number of outgoing asynchronous operations;
and the MPI implementation might need to maintain state for
each of them. This situation can cause the MPI implementa-
tion to consume large amounts of memory, leaving none for
the application. Similarly, since each process can communi-
cate with many other peers, the MPI implementation might
have to maintain state for all possible communication peers,
a situation that can cause O(P) memory consumption, where
P is the number of MPI processes in the system.

In this paper, we study four open-source MPI RMA
implementations—MPICH, MVAPICH, Open MPI, and
foMPI—examining their strengths and shortcomings and
demonstrating the different strategies they employ within
their MPI RMA infrastructure. The primary objective of this
work is to identify the scalability challenges in current MPI
implementations and propose what needs to change in order
to efficiently support MPI-based applications on extreme-
scale systems. The purpose of this study is to analyze the
conceptual features provided by the different implementa-
tions, rather than the software engineering of these different
features. Therefore, we implemented all the MPI RMA
features from each of these open-source implementations
into a common code base, thus allowing for an apples-to-
apples comparison of the features. Together with a detailed
analysis of the various features provided by the various
implementations, we also present a thorough performance
evaluation and analysis on up to 2,048 MPI processes.
Prerequisites. This paper assumes that the reader is familiar
with the semantics of MPI RMA. We recommend that those
unfamiliar with MPI RMA first read through past papers and
books ([4], [5], [6]) on the topic. We also note that we do
not include an explicit “related work™ section. Instead, we
describe the various existing MPI implementation capabilities
where appropriate in the text, and we cite the appropriate
references as needed.

II. OVERVIEW OF RDMA ON MODERN NETWORKS

Before we discuss the RMA infrastructure in current MPI
implementations, we need to first clarify how hardware
networks work. In this section, we present the relevant details
for common supercomputing networks with an emphasis on



the features that impact MPI implementations with respect
to performance or scalability.

RMA, typically referred to as remote direct memory
access (RDMA) for network hardware, is common on most
networks today. However, each network provides these capa-
bilities in a slightly different manner. Thus, to understand the
design choices of MPI RMA implementations, we must first
understand the subtle differences in the RDMA capabilities
of various networks. In this section, we present a survey
of RDMA capabilities on six different networks: Mellanox
InfiniBand [7], [8], Portals-4 on Bull BXI [9], [10], the Tofu
network architecture [11], the Cray Aries [12], the IBM Blue
Gene/Q network (BG/Q) [13], and RDMA over Converged
Ethernet (RoCE) [14].

For Mellanox InfiniBand, our survey is based on the
ConnectX-4 hardware. Portals-4 is technically only an API,
not a hardware specification, and currently no hardware
implements it; however, several network hardware implemen-
tations of Portals-4 have been announced, such as the BXI
interconnect from Bull. Our survey is based on the available
open literature on BXI. The Tofu network architecture is
based on Fujitsu’s K computer and the follow-on Fujitsu
FX100 computer [15]; these are two separate generations of
the Tofu network, but for the high-level overview provided
in this section, they are indistinguishable. For Cray Aries,
our survey is based on the Cray XC30 system. BG/Q is the
third generation in the IBM Blue Gene line of massively
parallel supercomputers. RoCE is a network protocol that
allows RDMA over Ethernet networks; our survey is based
on the RoCE version 2 protocol.

Table I: RDMA capabilities provided by modern networks

Network Window Address Protection Keys
InfiniBand HW-addr Yes
Portals4 HW-offset No
Tofu HW-addr No
Cray Aries HW-addr No
IBM BG/Q HW-offset No
RoCE HW-addr Yes

Of the various hardware capabilities provided by these
networks, two capabilities are of particular interest to us
with respect to their influence on the various designs of
MPI RMA: (1) window address calculation and (2) memory
protection keys. Table I summarizes those capabilities on the
six different networks in our survey. In the following sub-
sections, we provide more details on these two capabilities.

A. Window Address Calculation

Different networks provide different ways of referring to
the buffer to which an RDMA operation needs to be targeted.
For example, networks such as Mellanox InfiniBand require
that the MPI implementation provide the absolute virtual
address of the memory location on the target—we refer
to this model as “HW-addr”’-based RDMA. Networks such

as Portals-4, on the other hand, allow the implementation
to access the target buffer using an offset from a base
memory location—we refer to this model as “HW-offset”-
based RDMA. MPI RMA uses a slightly different model
from these two models. In the MPI RMA model, the user
specifies the target memory location as a scaled offset. That
is, the target memory region is identified by using an array
offset, where each element of the array is of a predefined
size (e.g., array of integers or array of doubles). Thus any
RMA communication needs to be scaled by the appropriate
array element size before any communication is performed.
We refer to this model as “scaled offset”-based RDMA.

This mismatch in the semantics of MPI RMA and the
semantics of the network RDMA capabilities has subtle
implications for the memory usage of the various MPI
implementations. The MPI implementation needs to translate
the user-specified “scaled offset”-based operations to the ap-
propriate RDMA model expected by the network hardware.
Thus, it needs to maintain appropriate metadata in order
to handle such translation. For example, on networks that
provide “HW-addr”-based RDMA, the MPI implementation
needs to maintain an O(P) array of base or start addresses
and another O(P) array of scaling units in order to do
this translation. For networks that provide “HW-offset”’-based
RDMA, on the other hand, one no longer has to maintain an
O(P) data structure for the base addresses but does need to
maintain such a structure for the scaling units. Fortunately, in
practice, most applications provide the same scaling unit on
all processes, thus requiring constant memory. At the time of
writing this paper, no publicly announced network provides
“scaled offset”-based RDMA.

B. Memory Protection Keys

RDMA allows multiple processes to directly access a tar-
get’s memory. While convenient, it is also a security concern,
particularly in non-scientific computing environments where
multiple users might share the same node or in secure envi-
ronments where multiple users share the same supercomputer
and protection between users is desired. To accommodate
such cases, some networks use a memory protection key
where only processes that have this protection key can access
the target’s memory. Mellanox InfiniBand is an example of
such a network, where a memory protection key, called an
“rkey,” is required in order to access a memory location
with RDMA. This key is asymmetric. That is, each process
can potentially generate a different key, thus requiring the
origin to store a key for each potential target: an O(P)
memory usage. Other networks, such as Tofu, require no
keys to access memory. While scalable, the model used by
Tofu requires that security against unauthorized accesses be
managed separately.



III. SCALABILITY ISSUES IN MPI IMPLEMENTATIONS

MPI implementations have several scalability limitations
in their RMA infrastructure. Some of these limitations are
common to all implementations, while others exist only in
specific implementations. In this section, we present the
various implementation choices for RMA that are used in
four open-source MPI implementations: MPICH (3.1.4) [16],
Open MPI (1.10.2) [17], MVAPICH (2.2b) [18], and foMPI
(0.2.1) [19]. Table II summarizes the scalability challenges
in these implementations.

A. Implementation Choices for MPI RMA Operations

While conceptually MPI RMA is similar to network hard-
ware RDMA, they are not exactly alike. Network hardware
RDMA is often restrictive in the capabilities it provides. For
example, most networks provide simple RDMA communica-
tion (such as writing (PUT) or reading (GET) of contiguous
data) in hardware. But more complex communication, such
as ACCUMULATE or RMA operations with noncontiguous
data segments, is often not directly implemented in hardware.
MPI RMA, on the other hand, is more general, providing
users with a wide variety of features, not all of which are
provided by network hardware RDMA. Consequently, some
MPI RMA operations map directly (or “natively”) to network
hardware RDMA, while other MPI RMA operations do not
have a native equivalent and thus need to be emulated.

The general approach used by most MPI implementations
to handle this issue is to use hybrid communication based on
network-hardware-based (HW-based) operations and active-
message-based (AM-based) operations [20]. AM-based op-
erations are software-emulated RDMA operations, where
the origin process sends a message and a software handler
(also known as the active-message handler) is triggered on
the target side. This active-message handler then performs
the appropriate action at the target process and returns any
required data to the origin.

RMA between processes on the same node is often im-
plemented by direct memory accesses to a shared-memory
region. We treat this as HW-based RMA in this paper.

Limitations of foMPI. HW-based operations typically
achieve higher performance, but AM-based operations are
more general. Consequently, most MPI implementations,
including MPICH, Open MPI, and MVAPICH, use a hybrid
model that chooses either HW-based or AM-based com-
munication depending on the operation. An exception is
foMPI, however, where all RMA operations are implemented
by using HW-based operations with the intention of tak-
ing advantage of their better performance. This approach,
however, comes at a cost. Operations that do not have a
native hardware RDMA equivalent need to be emulated by
using multiple hardware RDMA operations. Doing so causes
multiple network communication operations, leading to per-
formance loss. As we will show in Section IV, sometimes this

performance loss is so severe that the model results in more
than an order-of-magnitude worse performance compared
with that of AM-based operations.

An example of such degradation for ACCUMULATE op-
erations is presented in Figure 1. As discussed above, most
networks provides native hardware RDMA for contiguous
PUT/GET communication but not for atomic ACCUMULATE
operations such as summation or bitwise AND/OR. For such
operations, foMPI uses the following protocol. It first per-
forms hardware COMPARE_AND_SWAP over the network
in a loop waiting for a window mutex on the target to be
acquired. This mutex is required in order to maintain the
atomicity of ACCUMULATE operations. Once the mutex is
acquired, the origin issues a HW-based GET to fetch the
target data and performs the computation locally. After the
computation is finished, the origin issues a HW-based PUT to
push the results back to target. The origin then issues a HW-
based COMPARE_AND_SWAP to release the window mutex.
This method incurs significant overhead because each RMA
operation, which would have been a single one-way transac-
tion with AM-based communication, has now translated into
six one-way network transactions (note that we do not wait
for the return value in the second COMPARE_AND_SWAP).
If multiple atomic operations are competing for the same
memory location, the number of network transactions can be
more than six.

Another example of such degradation is with RMA oper-
ations for noncontiguous data. In this case, foMPI analyzes
derived datatypes and translates them into multiple small
contiguous RDMA operations over the network. Such a
strategy allows the MPI implementation to rely on native
hardware RDMA operations but incurs significant overhead
when the number of noncontiguous segments is large. As we
will discuss in Section IV, this can degrade performance by
more than an order of magnitude compared with AM-based
operations.

Limitations of MPICH, MVAPICH, and Open MPL
MPICH and Open MPI are portable to more networks than
MVAPICH and foMPI are. However, not all their features
are portable to all network configurations. MPICH provides
direct RMA operations only for shared memory and relies
on AM-based RMA operations for other networks (e.g.,
InfiniBand and Portals-4). Open MPI relies on AM-based
RMA operations for most networks (e.g., InfiniBand); for
Portals-4, however, it uses a hybrid approach utilizing both
HW-based and AM-based RMA operations. MVAPICH is
implemented only for InfiniBand and uses a hybrid approach
utilizing both HW-based and AM-based RMA operations,
similar to what Open MPI does for Portals-4.

B. Window Metadata Storage

In MPI, before any RMA operation is issued, each
process must declare a part of its memory as “remotely



Table II: Scalability challenges in existing MPI one-sided implementations

implementation

Aspect MPICH [ MVAPICH [ Open MPI | foMPI

Window metadata storage | O(P) memory usage

Synchronization in | REDUCE_SCATTER synchronization (O(P) memory) for AM- BARRIER synchronization
WIN_FENCE based implementation and BARRIER synchronization for HW-based

Metadata for targets

O(P) memory usage for AM-based implementation

Constant

Managing concurrent
passive locks

Queued locks (O(P) memory)

Lock polling for HW-based implemen-
tation and queued locks (O(P) mem-
ory) for AM-based implementation

Lock polling

Operation issuing strate-

Eager issuing for HW-based implementation and delayed issuing

Eager issuing

gies (unlimited memory usage) for AM-based implementation
Metadata for outgoing | Unlimited memory usage Constant
operations

origin target

ACC CAS (acquire window mutex)

GET (fetch target data)

<

computation

PUT (put result data back)

e

CAS (release window mutex)

Figure 1: Implementing ACCUMULATE using
network-hardware-based operations

accessible.” This part is referred to as “window cre-
ation.” MPI provides four ways of creating a window:
WIN_CREATE, WIN_ALLOCATE, WIN_CREATE_DYNAMIC,
and WIN_ALLOCATE_SHARED. Window creation is collec-
tive. During this phase, the MPI implementation can ex-
change the necessary metadata between different processes,
allowing them to access each other’s memory. This metadata
includes user-specified information such as the start address
of the target buffer on the window and the size of the scaling
unit, as well as network-hardware-specific metadata such as
memory protection keys.

The kind of metadata that needs to be stored by the
MPI implementation depends on the capabilities provided
by the network hardware as well as the kind of RMA
operations that the application uses, specifically operations
that are HW-based or AM-based. During window creation
time, the MPI implementation has information about the
network hardware but not about the kind of RMA operations
that would be issued by the application. Thus, it has to
maintain the metadata required for both AM-based and HW-
based operations. We will discuss the metadata required for
these two kinds of operations separately.

1) AM-Based Operations: AM-based operations are
generic and customizable. When an MPI RMA operation is
implemented by using AM-based operations, any information
required for accessing the target memory location, such
as the scaling unit, can be directly accessed at the target.

Thus, the origin process does not need to maintain such
metadata. Some MPI implementations, for example Open
MPI, implement AM-based operations this way, thus using
O(1) memory for the associated metadata. MPICH and
MVAPICH, on the other hand, store the window base address
for each target process, even for AM-based communication,
thus using O(P) memory for the associated metadata. This
approach is both unnecessary and wasteful. As described in
Section III-A, foMPI does not support AM-based operations.

2) HW-Based Operations: HW-based operations are, in
general, more efficient and performant than AM-based oper-
ations are. However, such performance benefit comes at the
cost of additional metadata storage requirements.

Metadata for Memory Protection Information. On networks
that require memory protection keys, each process has to
store this information for every target buffer. This process
requires O(P) memory. An example of such behavior is
MVAPICH, which stores this metadata for the InfiniBand
network. MPICH and Open MPI support InfiniBand but do
not provide HW-based RMA for it and hence do not need to
maintain such metadata. The foMPI implementation does not
support InfiniBand. For networks that do not require memory
protection keys, on the other hand, no such metadata storage
is required. An example is Open MPI over Portals-4. MPICH
supports Portals-4 but does not provide HW-based RMA for
it. MVAPICH and foMPI do not support Portals-4.

Metadata for Window Base Addresses. For networks that
require an absolute virtual address on the target for RDMA
operations, the origin needs to store the base addresses for
each target process, in the general case. This process requires
O(P) memory. An example of such behavior is MVAPICH,
which stores this metadata for InfiniBand when the base
addresses are not symmetric. When a window is created
with WIN_ALLOCATE, the MPI implementation can use a
technique called “symmetric allocation” to allocate the same
base address on all processes, so that each process consumes
only O(1) memory. This strategy is used by foMPI.

Metadata for Window Scaling Unit. At the time of writing
this paper, no publicly announced network directly provides
“scaled offset”’-based RDMA. Thus, in cases where the



user creates a window with different scaling units for each
process, the MPI implementation must maintain the neces-
sary metadata to store this information. MPICH, MVAPICH,
Open MPI, and foMPI all consume O(P) memory in this
case.

C. Epoch Synchronization

All MPI RMA operations must be enclosed within an
epoch. The origin needs to ensure that the target is “ready”
before it can issue RMA operations to that target. Two mod-
els for epoch synchronization exist. The first model is called
“active target synchronization,” where the origin and target
explicitly synchronize before RMA operations can be issued.
One example of this model is WIN_FENCE. The second
model is called “passive target synchronization,” where the
target is not explicitly involved in the synchronization, so
the origin needs to implicitly coordinate with other potential
origins before issuing RMA operations to that target. One
example of this model is WIN_LOCK. In this section, we
discuss the metadata requirements for both models.

1) Fence Epoch: WIN_FENCE is a common epoch model
in MPI RMA, used by applications such as Graph 500. In this
model, all processes open an epoch by calling WIN_FENCE,
issue RMA operations to each other, and close the epoch
by calling WIN_FENCE again. An origin can issue RMA
operations intended for a target only after the target has called
its epoch-opening WIN_FENCE. The return of the epoch-
closing WIN_FENCE on a process guarantees that (1) all
operations that it has issued have locally completed and (2)
all operations targeting it are now visible to that process. The
first guarantee is particularly important for performance; any
approach that forces a stronger guarantee, such as remote
completion for all operations, would be at a performance
disadvantage.

In the MPI implementations that we surveyed, two algo-
rithms are used for WIN_FENCE: REDUCE_SCATTER-based
(RS-based) and BARRIER-based (Figure 2).

Each process
ZZ:IIZIII:IIIIiII:III:II:Z:} Starting
Win_fence
OP (queued)
1

Each process

staring [ o ol
Winjence-l:

OP (queued) OP (issued)
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Issue all OPs and decr -
targets’ AT counter Wait for
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completion

L Ending

Win_fence Ending 5

Wait for local
Win_fence

completion

Wait for my AT
counter to be 0

(b) BARRIER-based

(a) RS-based algorithm algorithm

Figure 2: Fence algorithms

In the RS-based algorithm (Figure 2a), the epoch-opening
WIN_FENCE is a no-op; all posted operations are buffered
by the MPI implementation. The epoch-ending WIN_FENCE

first performs a REDUCE_SCATTER, so each target knows
the number of origins that will issue operations to it, and
initializes a local counter (AT) with that value. Next it issues
all the buffered operations, in which the last operation to
each target decrements the target’s AT counter. It then waits
for the local completion of all the operations that it issued
and for its AT counter to become zero, in other words,
that all operations targeting it have been completed. This
algorithm does not have additional synchronization other
than that required by the MPI standard, and thus it is ideally
suited for performance. However, it has two limitations. First,
REDUCE_SCATTER requires O(P) memory. Second, this al-
gorithm assumes that a process knows when it is targeted by
an RMA operation—an assumption that is not true for several
networks (e.g., InfiniBand) when using hardware RDMA.
Consequently, it can be used only for implementations where
all operations are AM-based or for implementations over net-
works that provide remote notification semantics for RDMA
(e.g., Fujitsu Tofu). MPICH and Open MPI use this algorithm
for networks where no HW-based operations are supported,
for example, MPICH for non-shared-memory networks and
Open MPI for all networks other than Portals-4.

In the BARRIER-based algorithm (Figure 2b), the epoch-
opening WIN_FENCE performs a BARRIER among all pro-
cesses on the window. The epoch-closing WIN_FENCE waits
for remote completion for all the issued operations and then
performs another BARRIER. This algorithm is scalable with
respect to the number of processes in the system, since the
memory it uses is independent of the system size. However,
it imposes a stricter synchronization than what the MPI
standard requires. In particular, it forces the epoch-opening
WIN_FENCE to synchronize between all processes—which
is not required by the MPI standard. Moreover, the origin
processes have to wait for remote completion of all opera-
tions at the epoch-closing WIN_FENCE—which is stricter
than the local completion required by the MPI standard.
Thus, while this approach is scalable with respect to memory
usage, it can lose performance compared with the RS-
based algorithm. MPICH, Open MPI, and foMPI use this
algorithm for HW-based operations. MVAPICH uses both the
BARRIER-based and RS-based algorithms simultaneously
within WIN_FENCE.

2) WIN_LOCK Epoch: Like WIN_FENCE, WIN_LOCK is

also a common epoch model and is used by applications
such as NWChem [2]. When using WIN_LOCK, two aspects
can cause the MPI implementation to consume memory that
scales linearly with the number of processes in the system.
We discuss both aspects here.
Target Objects. With WIN_LOCK, the MPI implementation
needs to maintain a “target object” for each target in order
to maintain certain state information, thus requiring O(P)
memory storage. Three types of state information exist: user
hints, an error-checking flag, and a lock-state flag.

User hints are recommendations given by the application



for cases where the application does not need the full
generality offered by the MPI standard, thus allowing the
MPI implementation to optimize performance or resource
usage. One example of such user hints is MODE_NOCHECK.
This hint implies that the application would algorithmically
ensure that there will not be any conflicting locks to the same
target on the same window. The MPI implementation can use
this hint to optimize performance by not acquiring a lock. If
it does so, however, it needs to ensure that it also will not
unlock the target, since no lock has been acquired.

Technically, checking for errors is “best effort” as defined
in the MPI standard. However, most MPI implementations
tend to provide some error checking, primarily as a conve-
nience to users. One example of such error checking is for the
lock state. Specifically, the MPI standard prohibits one origin
from locking the same target more than once in a nested
fashion. Maintaining this information within the target object
allows the MPI implementation to detect and report such
errors. Doing so, however, requires the MPI implementation
to store this information on a per-target manner, typically in
an error-checking flag.

The lock-state flag indicates the status of the lock acquisi-
tion. Two approaches are used to acquire locks. One approach
is based on a synchronous lock: the WIN_LOCK call does not
return until the lock at the target is acquired. This is a stricter
definition than what is required by the MPI standard; and
although it is correct, it can degrade performance. A second
approach is based on an asynchronous lock: the WIN_LOCK
call initiates the lock acquisition but returns before the lock
is acquired. This approach is often more efficient because the
lock acquisition can be overlapped with other computation at
the origin. If the user issues RMA operations before the lock
is acquired, however, the MPI implementation must buffer
such operations because they cannot be issued to the target
before the lock is acquired. The state of whether a lock has
been acquired or not for each target is stored in the lock-state
flag. Because of the pros and cons of the two approaches,
MPICH, MVAPICH, and Open MPI provide hybrid models
utilizing both the synchronous and asynchronous approaches.
However, foMPI provides only the synchronous approach.
The lock state flag is needed only in the asynchronous
approach.

Lock Queuing. In the WIN_LOCK epoch, the target is not
involved in the opening and closing of the epoch; instead,
the origin has to coordinate with other potential origins
before it can access the target. The general model to do
this coordination is to have an access mutex at the target
that maintains “ownership” with respect to which origin has
access to the memory on that target. Concurrent locks to the
same target might get serialized while trying to acquire such
ownership.

Two strategies are used in MPI implementations to manage
such ownership. Open MPI (for Portals-4) and foMPI use

a “lock polling” strategy. In this strategy, WIN_LOCK is
a synchronous lock where the origin attempts to acquire
the lock by repeatedly issuing lock-attempt messages to the
target until the lock is granted. This strategy, unfortunately,
generates significant network traffic during WIN_LOCK, and
it cannot guarantee starvation freedom among competitors.
On the other hand, MPICH, MVAPICH, and Open MPI (for
InfiniBand) use a “queued locks” strategy. In this strategy,
WIN_LOCK issues a lock query to the target. The target
grants the lock to the first query and buffers all other queries
in a priority queue. When the current lock is released,
the target grants the lock to the next query in that queue.
This strategy involves no additional network traffic because
each competitor issues only one message to the target. It
also guarantees starvation freedom among competitors. The
disadvantage of this approach, however, is that the priority
queue can potentially have a query from each process in the
system, thus consuming O(P) memory in the worst case.

D. Data Movement Operations

Apart from the storage required for the window and
target metadata, communication operations in MPI RMA
themselves require additional metadata. Before we discuss
the details of such metadata, however, we first explain how
the issuing of RMA operations works.

Two strategies are used to issue RMA operations in MPI
implementations: eager-issuing and delayed-issuing strate-
gies [21]. In the eager-issuing strategy, the epoch-opening
call is a blocking call; it completes the synchronization
(e.g., BARRIER in Figure 2b) before the call returns. In
this model, the origin can issue RMA operations as soon as
they are posted by the application. The downside, however,
is that the epoch-opening strategy is synchronous and thus
hurts performance. In the delayed-issuing strategy, the epoch-
opening call is essentially a no-op, and the synchronization
is delayed to the epoch-closing call. This model requires that
the MPI implementation buffer the metadata for all posted
operations to be later issued during the epoch-closing call.
By doing so, synchronization in the epoch-opening call can
be avoided.

1) Operation Objects: Every MPI RMA operation is asso-
ciated with some metadata, such as the buffer address, data
count, datatype, and computation type (in ACCUMULATE-
like operations). If the MPI implementation issues each
operation as soon the operation is posted, it does not have
to maintain this metadata. If, on the other hand, the MPI
implementation chooses to buffer the operation for later
issuing, it has to maintain this metadata in an “operation
object.”

In the delayed-issuing strategy, all operations need to
be buffered until the synchronization with the target is
completed. Each buffered operation allocates an operation
object that stores the required metadata for that operation.
This strategy improves performance because synchronization



in the epoch-opening call can be avoided. Such performance
improvement, however, comes at the cost of additional mem-
ory usage. In general, as the number of processes involved
in the synchronization increases, the time required for the
synchronization increases. Thus, for larger systems, we can
expect synchronizations that involve all processes (such as
WIN_FENCE) to take longer to complete. Consequently,
more operations have to be buffered, thus using more mem-
ory and causing scalability concerns as the problem size and
the number of operations grows. MPICH, MVAPICH, and
Open MPI use eager issuing for HW-based operations and
delayed issuing for AM-based operations, whereas foMPI
uses only the eager-issuing strategy.

2) Request Objects: Once an RMA operation is issued
by the MPI implementation, the metadata needed for issuing
the operation (i.e., the operation object) is no longer needed
and can be safely discarded. However, some metadata is
still required to track the completion of the operation. For
HW-based operations, such metadata is typically tracked
by the network hardware, in the form of either completion
events (e.g., InfiniBand) or a single counter that tracks the
number of operations completed (e.g., Portals-4). For AM-
based operations, however, the MPI implementation needs to
keep track of the state of issued but incomplete operations in
an object called “request” in order to detect their completion.
MPICH, Open MPI, and MVAPICH use request objects
for AM-based operations. Unfortunately, none of the MPI
implementations have any resource management strategy to
manage such request objects. Consequently, these objects
can easily use up internal resources when there are a large
number of incomplete operations. Since foMPI offloads all
RMA operations to the hardware, no request objects need to
be maintained.

IV. EVALUATION

In this section, we evaluate the impact of the various
strategies used in different MPI implementations with respect
to performance and memory usage. We use two clusters for
our evaluation. The first cluster, “Fusion,” is configured with
Mellanox InfiniBand and has 320 nodes; each node contains
8 cores and 36 GB of memory. The second cluster, “Bread-
board,” consists of 16 nodes and is configured with Portals-
4; each node contains 16 cores and 16 GB of memory. The
Portals-4 network stack is the reference implementation from
Sandia National Laboratories, implemented over InfiniBand.
Since our focus is on the strategies used by the different
implementations, to keep the comparison fair, we ported all
the strategies from all the studied MPI implementations into
a single code base based on MPICH-3.1.4. All comparisons
are made using this code base.

For all experiments, we started with 100,000 iterations
for small scales (e.g., small message sizes, small number of
processes). As we scaled up the test, we reduced the iteration
count so as to keep the time taken by each subexecution

between 20 and 40 seconds, which was sufficient to gain
reasonable statistical confidence in our experiments. The tests
themselves were executed 10 times, and the statistical error
bars are shown in each figure.

A. Performance of HW-Based and AM-Based Operations

As discussed in Section III-A, MPICH, MVAPICH, and
Open MPI use a hybrid model that combines both HW-
based and AM-based operations; foMPI, however, converts
all operations to HW-based operations, often at the cost of
multiple additional HW operations. In this section, we com-
pare the performance of the foMPI strategy with that used
by MPICH, MVAPICH, and Open MPI. We compare three
types of RMA operations: (1) PUT with contiguous data, (2)
PUT with noncontiguous data, and (3) ACCUMULATE with
a basic datatype.

As expected, HW-based PUT performs better than AM-
based PUT for contiguous data by up to 40% (Figure 3a).
When noncontiguous derived datatypes' are used, however,
the performance of HW-based PUT is more than an order of
magnitude worse than that of AM-based PUT. The reason
is that, as described in Section III-A, the HW-based imple-
mentation translates each noncontiguous PUT into multiple
small contiguous hardware PUTs. This step significantly
increases the number of hardware transactions compared
with the AM-based approach. HW-based ACCUMULATE is
implemented as shown in Figure 1. AM-based ACCUMU-
LATE is implemented by triggering a handler at the target
that acquires a window mutex, performs computation, and
releases the mutex. Our benchmark performs “ACCUMULATE
+ WIN_FLUSH_LOCAL” in a loop. Figure 3c shows the
message rate achieved. Again, the AM-based implementa-
tion significantly outperforms the HW-based implementation
because the latter needs to convert each ACCUMULATE into
multiple hardware transactions.

B. Window Metadata Storage

The next aspect that we compare is the metadata storage
for the window. As mentioned in Section III-B1, no metadata
storage is needed when the MPI implementation uses only
AM-based operations. However, MPICH, MVAPICH, and
Open MPI use both HW-based and AM-based operations;
and foMPI uses only HW-based operations. Thus, all MPI
implementations require some metadata, as appropriate to
the network they are using.

Figures 4a and 4b show the memory usage of different
window creation schemes. The solid lines indicate measured
memory usage (up to 2,048 processes), while the dotted
lines indicate predicted memory usage on larger systems. We
measured four combinations of window creation schemes: (1)
WIN_CREATE with different scaling units on each process,
(2) WIN_CREATE with the same scaling unit on all processes,

Ivector type, where each block is a single byte and the number of blocks
was increased to create larger messages; we used a stride of two bytes.
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Figure 3: Performance comparison of HW-based and AM-based operations (InfiniBand)

(3) WIN_ALLOCATE with different scaling units on each
process, and (4) WIN_ALLOCATE with the same scaling unit
on all processes.

Figure 4a shows the memory usage on InfiniBand. Rec-
ollect that InfiniBand requires absolute virtual addresses on
the target and memory protection keys for communication.
Thus, three sets of metadata need to be maintained in the
worst case: window base addresses (8 bytes), scaling unit
sizes (4 bytes), and asymmetric remote protection keys (48
bytes). Therefore, all four schemes increase linearly with the
number of processes, using up to 120 KB per process for
2,048 processes (measured) and 60 MB per process for 1
million processes (estimated). Figure 4b shows the memory
usage on Portals-4. Recollect that Portals-4 uses address
offsets, instead of absolute virtual addresses at the target.
Thus, window base addresses do not need to be maintained.
Similarly, Portals-4 does not require any memory protection
keys. The only piece of metadata needed would be the scaling
unit, which can be O(P) if each process provides a different
scaling unit size, thus using up to 1 KB per process for 256
processes (measured) and 4 MB per process for 1 million
processes (estimated).

C. Epoch Synchronization Metadata

Next we compare the different epoch synchronization
strategies presented in Section III-C.

Different Approaches for WIN_FENCE. As described in Sec-
tion III-C1, two algorithms are possible for WIN_FENCE:
RS-based and BARRIER-based. We performed two studies
comparing these approaches. The first study was for per-
formance, as shown in Figure 5. The BARRIER-based algo-
rithm does additional synchronization for the epoch-opening
WIN_FENCE as well as the RMA operations themselves
(by waiting for their remote completion). This causes it to
lose performance compared with the RS-based algorithm.
In our experiment, this performance difference is 70% for
2,048 processes. The second study was for memory usage.
As expected, the memory usage increases as O(P) for the
RS-based algorithm, while the BARRIER-based algorithm
does not use any additional metadata. These results are
straightforward, so we have not plotted them in the paper.

Management of Target Objects. We studied the memory
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usage for the target objects described in Section III-C2. As
with the RS-based algorithm for WIN_FENCE, the memory
usage increases as O(P). Again, these experimental results
were straightforward, so we have not plotted them in the
paper.

Lock Queuing. In Figure 6, we compare the two lock
management strategies discussed in Section III-C2: “queued
locks” and “lock polling.” In our experiment, we use all-to-
one communication where multiple origins issue an exclusive



WIN_LOCK to the same target, followed by one or more
1-byte RMA operations. Figure 6a shows the performance
when there is a single operation within the epoch. At 2,048
processes, queued locks perform nearly 3.5-fold better than
lock polling. The reason is that lock polling generates signif-
icant network traffic, causing network contention. Figure 6b
shows the performance when 64K operations are issued
within the epoch. Queued locks perform better than lock
polling by nearly an order of magnitude for 2,048 processes.
The advantage is larger here, compared with the case where
a single operation is issued within the epoch, because issuing
more operations worsens the network contention irrespective
of whether these operations are for lock acquisition or for
actual data communication.

Figure 6¢ shows the memory usage for the two strategies.
The memory usage of lock polling is zero as expected, while
that of queued locks increases linearly with the number of
origins, peaking at around 70 KB for 2,048 processes for
each MPI window, in other words, 32 bytes per origin per
window. Thus, on a system with a million processes, where
each process creates 10 windows, the memory usage per
process can be as high as 320 MB. This is, of course, the
worst-case scenario. In practice, however, an application is
unlikely to have an access pattern where all origins attempt
to lock the same target, which is highly unscalable. Thus,
the actual memory usage can be expected to be considerably
lower.

D. Data Movement Operations

Here we analyze the memory usage of the operation
and request objects for the two approaches described in
Section III-D.

1) Total Memory Usage per Process: We first measure the
total memory usage of the MPI implementation in an all-to-
all communication. We restrict the number of processes to
16, distributed over two nodes, and increase the number of
operations issued by each process. The results are shown in
Figure 7. In the eager-issuing strategy, the memory usage
is flat (this memory is used by the MPI implementation to
store other metadata), whereas in the delayed-issuing strategy
the memory usage increases with the number of operations
posted. In fact, the amount of memory used is so high that
the benchmark runs out of memory and fails to execute for
more than 4 million operations.

2) Metadata for Operation Objects: We next divide this
memory usage into that used by the operation objects and that
used by the request objects. The benchmark we used does
an all-to-all communication where each origin issues 64K
operations to each target. This pattern is repeated for four
fence epochs. Figure 8a shows the memory usage profile for
operation objects over time. Recollect that this metadata is
maintained when an operation is posted by the application
but has not yet been issued on the network. This behavior

occurs only in the delayed-issuing strategy since the eager-
issuing strategy does not buffer any operations and thus does
not need to store such metadata. We note that memory usage
increases at the beginning until the execution enters the
epoch-ending WIN_FENCE; the memory usage then drops.
The reason is that all posted operations are buffered until
the epoch-ending WIN_FENCE. During the epoch-ending
WIN_FENCE, all the posted operations are issued out by the
MPI implementation, and memory usage decreases.

We observe that the memory usage reduction goes through
three phases. In the first phase, the reduction is steep. In the
second phase, some reduction still occurs, but the rate of
reduction is considerably lower. In the third phase, again
the reduction is steep. This last result was unexpected, so
we analyzed the MPI implementations that use this strategy
(MPICH and MVAPICH). We found that this behavior stems
from how the garbage collection (GC) works in these MPI
implementations. Specifically, the GC checks for operations
that have already completed and frees them. For performance
reasons, the GC does not check the entire queue every time
but only a limited subset of the queue. One can expect that
the first few operations to a process complete quickly while
the later operations take longer to complete. However, since
these MPI implementations maintain a single queue for all
processes, a partial parsing of the queue will observe only a
few completions, even if there are more. Thus the GC code
spends more time parsing the queue and consequently loses
performance. This is a software engineering issue and can be
fixed by improving the design of the GC code; it should not
be interpreted as an artifact of the delayed-issuing strategy.

3) Metadata for Request Objects: Figure 8b shows the
profile of the memory used by the request objects for
operations that have been issued but have not yet completed.
We notice that the memory usage increases during the first
WIN_FENCE but stays constant until the end of the appli-
cation execution. The reason is that MPI implementations
typically tend to minimize the amount of memory allocation
and deallocation required by storing requests that are once
allocated, without freeing them until FINALIZE.

V. CONCLUDING REMARKS

In this paper, we investigated four open-source MPI
implementations—MPICH, MVAPICH, Open MPI, and
foMPI—and identified several scalability limitations in their
RMA infrastructures. The scalability limitations illustrated
in this paper involve window creation, synchronization, and
data movement. To demonstrate these limitations in a fair
comparison, we implemented the various features from all
these implementations in a single code base and evaluated
them for performance and memory usage. We observed that
several scalability limitations exist in MPI implementations
that prevent MPI from effectively supporting irregular ap-
plications at scale. Efficient solutions are needed to address
these challenges.
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